kernel/config.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
// Licensed under the Apache License, Version 2.0 or the MIT License.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// Copyright Tock Contributors 2022.
//! Data structure for storing compile-time configuration options in the kernel.
//!
//! The rationale for configuration based on a `const` object is twofold.
//!
//! - In theory, Cargo features could be used for boolean-based configuration.
//! However, these features are generally error-prone for non-trivial use
//! cases. First, they are globally enabled as long as a dependency
//! relationship requires a feature (even for other dependency relationships
//! that do not want the feature). Second, code gated by a non-enabled feature
//! isn't even type-checked by the compiler, and therefore we can end up with
//! broken features due to refactoring code (if these features aren't tested
//! during the refactoring), or to incompatible feature combinations.
//!
//! - Cargo features can only contain bits. On the other hand, a constant value
//! can contain arbitrary types, which allow configuration based on integers,
//! strings, or even more complex values.
//!
//! With a typed `const` configuration, all code paths are type-checked by the
//! compiler - even those that end up disabled - which greatly reduces the risks
//! of breaking a feature or combination of features because they are disabled
//! in tests.
//!
//! In the meantime, after type-checking, the compiler can optimize away dead
//! code by folding constants throughout the code, so for example a boolean
//! condition used in an `if` block will in principle have a zero cost on the
//! resulting binary - as if a Cargo feature was used instead. Some simple
//! experiments on generated Tock code have confirmed this zero cost in
//! practice.
/// Data structure holding compile-time configuration options.
///
/// To change the configuration, modify the relevant values in the `CONFIG`
/// constant object defined at the end of this file.
pub struct Config {
/// Whether the kernel should trace syscalls to the debug output.
///
/// If enabled, the kernel will print a message in the debug output for each
/// system call and upcall, with details including the application ID, and
/// system call or upcall parameters.
pub trace_syscalls: bool,
/// Whether the kernel should show debugging output when loading processes.
///
/// If enabled, the kernel will show from which addresses processes are
/// loaded in flash and into which SRAM addresses. This can be useful to
/// debug whether the kernel could successfully load processes, and whether
/// the allocated SRAM is as expected.
pub debug_load_processes: bool,
/// Whether the kernel should output additional debug information on panics.
///
/// If enabled, the kernel will include implementations of
/// `Process::print_full_process()` and `Process::print_memory_map()` that
/// display the process's state in a human-readable form.
// This config option is intended to allow for smaller kernel builds (in
// terms of code size) where printing code is removed from the kernel
// binary. Ideally, the compiler would automatically remove
// printing/debugging functions if they are never called, but due to
// limitations in Rust (as of Sep 2021) that does not happen if the
// functions are part of a trait (see
// https://github.com/tock/tock/issues/2594).
//
// Attempts to separate the printing/debugging code from the Process trait
// have only been moderately successful (see
// https://github.com/tock/tock/pull/2826 and
// https://github.com/tock/tock/pull/2759). Until a more complete solution
// is identified, using configuration constants is the most effective
// option.
pub debug_panics: bool,
/// Whether the kernbel should output debug information when it is checking
/// the cryptographic credentials of a userspace process. If enabled, the
/// kernel will show which footers were found and why processes were started
/// or not.
// This config option is intended to provide some visibility into process
// credentials checking, e.g., whether elf2tab and tockloader are generating
// properly formatted footers.
pub debug_process_credentials: bool,
pub is_cheri: bool,
/// Whether or not the MMU requires asynchronous configuration
pub async_mpu_config: bool,
}
/// A unique instance of `Config` where compile-time configuration options are
/// defined.
///
/// These options are available in the kernel crate to be used for
/// relevant configuration. Notably, this is the only location in the Tock
/// kernel where we permit `#[cfg(x)]` to be used to configure code based on
/// Cargo features.
pub const CONFIG: Config = Config {
trace_syscalls: cfg!(feature = "trace_syscalls"),
debug_load_processes: cfg!(feature = "debug_load_processes"),
debug_panics: !cfg!(feature = "no_debug_panics"),
debug_process_credentials: cfg!(feature = "debug_process_credentials"),
is_cheri: cfg!(target_feature = "xcheri"),
async_mpu_config: cfg!(target_feature = "xcheri"),
};
/// Trait allows selecting type based on a const param
pub trait CfgControl<const ENABLED: bool> {
type Out: ?Sized;
}
impl<T: ?Sized, U: ?Sized> CfgControl<true> for (*const T, *const U) {
type Out = T;
}
impl<T: ?Sized, U: ?Sized> CfgControl<false> for (*const T, *const U) {
type Out = U;
}
/// Selects between T and U based on condition
type IfElseT<T, U, const CONDITION: bool> = <(*const T, *const U) as CfgControl<CONDITION>>::Out;
/// These types are for situations where a feature would change what type is in use. This is better
/// than conditional compilation as a single compilation run can type check all combinations of
/// features.
///
/// Usage: type MyType = IfElseCfg<TrueType, FalseType, ConditionForTrueType>
///
/// If coming from C and you are used to the pattern of
///
/// struct Foo {
/// #if SOME_FLAG
/// T1 field_t1;
/// #else
/// T2 field_t2;
/// #endif
/// }
///
/// Instead write:
///
/// struct Foo {
/// field : IfElseCfg<T1, T2, SOME_FLAG>,
/// }
///
/// Then, rather than
///
/// Foo myFoo = ...;
/// #if SOME_FLAG
/// bar(&myFoo.field_t1);
/// #else
/// baz(&myFoo.field_t2);
/// #endif
///
/// Do
///
/// let myFoo : Foo = ...;
/// if SOME_FLAG {
/// bar(myFoo.get_true_ref())
/// } else {
/// baz(myFoo.get_false_ref())
/// }
///
/// Or more cleanly:
///
/// let myFoo : Foo = ...;
/// myFoo.mapRef(bar, baz);
///
pub struct IfElseCfg<T, U, const CONDITION: bool>(IfElseT<T, U, CONDITION>)
where
(*const T, *const U): CfgControl<CONDITION>;
#[allow(clippy::expl_impl_clone_on_copy)]
impl<T: Clone, U: Clone, const COND: bool> Clone for IfElseCfg<T, U, COND>
where
(*const T, *const U): CfgControl<COND>,
IfElseT<T, U, COND>: Clone,
{
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<T: Copy, U: Copy, const COND: bool> Copy for IfElseCfg<T, U, COND>
where
(*const T, *const U): CfgControl<COND>,
IfElseT<T, U, COND>: Copy,
{
}
/// If both types contained inside an IfElseCfg obey a trait, then we can make the config type
/// also implement that trait.
macro_rules! proxy_config_trait {
($(impl<> $trait : ident {
$(fn $f : ident $(<{$($params : tt)*}>)? ($($args : tt)*) $(-> $ret : path)?;)*
})*) => {
$(
impl<T : $trait, U : $trait> $trait for IfElseCfg<T, U, true> {
$(
proxy_config_trait_item!(@TRUE $trait,
fn $f $(<{$($params)*}>)? ($($args)*) $(-> $ret)?;
);
)*
}
impl<T : $trait, U : $trait> $trait for IfElseCfg<T, U, false> {
$(
proxy_config_trait_item!(@FALSE $trait,
fn $f $(<{$($params)*}>)? ($($args)*) $(-> $ret)?;
);
)*
}
)*
};
}
/// We cover three patterns for methods here:
/// Constructors
/// &self methods
/// &mut self methods
macro_rules! proxy_config_trait_item {
// Constructors
(@TRUE $trait : ident, fn $con : ident $(<{$($params : tt)*}>)? ($($v : ident: $t : ty $(| $unwrap : ident)?),*) -> $ret : path;) => {
fn $con$(<$($params)*>)?($($v: $t),*) -> Self {
Self::new_true($trait::$con($( $v $(.$unwrap())? ),*))
}
};
(@FALSE $trait : ident, fn $con : ident $(<{$($params : tt)*}>)? ($($v : ident: $t : ty $(| $unwrap : ident)?),*) -> $ret : path;) => {
fn $con$(<$($params)*>)?($($v: $t),*) -> Self {
Self::new_false($trait::$con($($v $(.$unwrap())?),*))
}
};
// &self
(@TRUE $trait : ident, fn $method : ident $(<{$($params : tt)*}>)? (&self $(,$v : ident: $t : ty $(| $unwrap : ident)?)*) $(-> $ret : path)?;) => {
fn $method$(<$($params)*>)?(&self, $($v: $t),*) $(-> $ret)? {
$trait::$method(self.get_true_ref() $(, $v $(.$unwrap())?)*)
}
};
// &self
(@FALSE $trait : ident, fn $method : ident $(<{$($params : tt)*}>)? (&self $(,$v : ident: $t : ty $(| $unwrap : ident)?)*) $(-> $ret : path)?;) => {
fn $method$(<$($params)*>)?(&self, $($v: $t),*) $(-> $ret)? {
$trait::$method(self.get_false_ref() $(, $v $(.$unwrap())?)*)
}
};
// &mut self
(@TRUE $trait : ident, fn $method : ident $(<{$($params : tt)*}>)? (&mut self $(,$v : ident: $t : ty $(| $unwrap : ident)?)*) $(-> $ret : path)?;) => {
fn $method$(<$($params)*>)?(&self, $($v: $t),*) $(-> $ret)? {
$trait::$method(self.get_true_mut() $(, $v $(.$unwrap())?)*)
}
};
// &mut self
(@FALSE $trait : ident, fn $method : ident $(<{$($params : tt)*}>)? (&mut self $(,$v : ident: $t : ty $(| $unwrap : ident)?)*) $(-> $ret : path)?;) => {
fn $method$(<$($params)*>)?(&self, $($v: $t),*) $(-> $ret)? {
$trait::$method(self.get_false_mut() $(, $v $(.$unwrap())?)*)
}
};
}
use core::fmt::{Debug, Display, LowerHex, UpperHex};
use core::hash::{Hash, Hasher};
proxy_config_trait!(
impl<> Default {
fn default () -> Self;
}
// core fmt traits
impl<> Debug {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result;
}
impl<> Display {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result;
}
impl<> UpperHex {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result;
}
impl<> LowerHex {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result;
}
// core::cmp traits
impl<> PartialEq {
fn eq(&self, other : &Self | unwrap_ref) -> bool;
}
impl<> Eq {}
impl<> PartialOrd {
fn partial_cmp(&self, other: &Self | unwrap_ref) -> Option<core::cmp::Ordering>;
}
impl<> Ord {
fn cmp(&self, other: &Self | unwrap_ref) -> core::cmp::Ordering;
}
impl<> Hash {
fn hash<{H: Hasher}> (&self, state: &mut H);
}
);
pub enum CfgConsumed<T, U> {
True(T),
False(U),
}
pub enum CfgMatch<'a, T: 'a, U: 'a> {
True(&'a T),
False(&'a U),
}
pub enum CfgMatchMut<'a, T: 'a, U: 'a> {
True(&'a mut T),
False(&'a mut U),
}
impl<T, U, const COND: bool> IfElseCfg<T, U, COND>
where
(*const T, *const U): CfgControl<COND>,
{
pub fn unwrap(self) -> IfElseT<T, U, COND>
where
<(*const T, *const U) as CfgControl<COND>>::Out: Sized,
{
self.0
}
pub fn unwrap_ref(&self) -> &IfElseT<T, U, COND> {
&self.0
}
pub fn unwrap_mut(&mut self) -> &mut IfElseT<T, U, COND> {
&mut self.0
}
}
#[allow(clippy::needless_pass_by_ref_mut)]
impl<T, U> IfElseCfg<T, U, true> {
pub const fn new_true(value: T) -> Self {
Self(value)
}
pub const fn new_false(_value: U) -> Self {
panic!()
}
pub const fn new(value_true: T, _value_false: U) -> Self
where
T: Copy,
U: Copy,
{
Self(value_true)
}
pub fn get_match(&self) -> CfgMatch<T, U> {
CfgMatch::True(&self.0)
}
pub fn get_match_mut(&mut self) -> CfgMatchMut<T, U> {
CfgMatchMut::True(&mut self.0)
}
pub fn map_ref<R, FT, FF>(&self, true_f: FT, _false_f: FF) -> R
where
FT: FnOnce(&T) -> R,
FF: FnOnce(&U) -> R,
{
true_f(&self.0)
}
pub fn map_mut<R, FT, FF>(&mut self, true_f: FT, _false_f: FF) -> R
where
FT: FnOnce(&mut T) -> R,
FF: FnOnce(&mut U) -> R,
{
true_f(&mut self.0)
}
pub const fn get_true_ref(&self) -> &T {
&self.0
}
pub fn get_true_mut(&mut self) -> &mut T {
&mut self.0
}
pub fn get_false_ref(&self) -> &U {
panic!()
}
pub fn get_false_mut(&mut self) -> &mut U {
panic!()
}
pub fn consume_true(self) -> T {
self.0
}
pub fn consume_false(self) -> U {
panic!()
}
pub fn consume(self) -> CfgConsumed<T, U> {
CfgConsumed::True(self.0)
}
pub fn cfg_into<X>(self) -> X
where
T: Into<X>,
U: Into<X>,
{
self.0.into()
}
pub fn cfg_from<X: Into<T> + Into<U>>(x: X) -> Self {
Self::new_true(x.into())
}
}
#[allow(clippy::needless_pass_by_ref_mut)]
impl<T, U> IfElseCfg<T, U, false> {
pub const fn new_true(_value: T) -> Self {
panic!()
}
pub const fn new_false(value: U) -> Self {
Self(value)
}
pub const fn new(_value_true: T, value_false: U) -> Self
where
T: Copy,
U: Copy,
{
Self(value_false)
}
pub fn get_match(&self) -> CfgMatch<T, U> {
CfgMatch::False(&self.0)
}
pub fn get_match_mut(&mut self) -> CfgMatchMut<T, U> {
CfgMatchMut::False(&mut self.0)
}
pub fn map_ref<R, FT, FF>(&self, _true_f: FT, false_f: FF) -> R
where
FT: FnOnce(&T) -> R,
FF: FnOnce(&U) -> R,
{
false_f(&self.0)
}
pub fn map_mut<R, FT, FF>(&mut self, _true_f: FT, false_f: FF) -> R
where
FT: FnOnce(&mut T) -> R,
FF: FnOnce(&mut U) -> R,
{
false_f(&mut self.0)
}
pub fn get_true_ref(&self) -> &T {
panic!()
}
pub fn get_true_mut(&mut self) -> &mut T {
panic!()
}
pub const fn get_false_ref(&self) -> &U {
&self.0
}
pub fn get_false_mut(&mut self) -> &mut U {
&mut self.0
}
pub fn consume_true(self) -> T {
panic!()
}
pub fn consume_false(self) -> U {
self.0
}
pub fn consume(self) -> CfgConsumed<T, U> {
CfgConsumed::False(self.0)
}
pub fn cfg_into<X>(self) -> X
where
T: Into<X>,
U: Into<X>,
{
self.0.into()
}
pub fn cfg_from<X: Into<T> + Into<U>>(x: X) -> Self {
Self::new_false(x.into())
}
}
/// Correctly uses the IfElseCfg type depending on one of the config options in the global CONFIG
/// struct.
/// If no false type is provided, it will be unit.
///
/// Usage: type MyType = TIfCfg!(FeatureFlag, TrueType [, FalseType]?);
///
/// e.g.:
///
/// type TracingType = TIfCfg!(trace_syscalls, TypeNeedIfTracing);
///
/// Expands to
///
/// type TracingType = IfElseCfg<TypeNeedIfTracing,
/// (),
/// {(CONFIG.trace_syscalls) as usize}>
///
/// Usage in conjunction with ! (or never::Never),
///
/// If you want to eliminate a enum variant in certain configurations, do:
///
/// See OnlyInCfg and NotInCfg for shorter forms
///
/// ```text
/// use kernel::TIfCfg;
/// use kernel::utilities::never::Never;
/// enum E {
/// Var1,
/// Var2(TIfCfg!(debug_panics, (), Never)), // variant only exists with config debug_panics
/// Var3(TIfCfg!(debug_panics, Never, ())), // variant only exists without config debug_panics
/// }
/// ```
///
#[macro_export]
macro_rules! TIfCfg {
($feature : ident, $TIf : ty, $TElse : ty) =>
($crate::config::IfElseCfg<$TIf, $TElse, {$crate::config::CONFIG. $feature}>);
($feature : ident, $T : ty) =>
($crate::TIfCfg!($feature, $T, ()));
}
#[macro_export]
macro_rules! OnlyInCfg {
($feature : ident, $t : ty) => {
$crate::TIfCfg!($feature, $t, $crate::utilities::never::Never)
};
($feature : ident) => {
$crate::TIfCfg!($feature, (), $crate::utilities::never::Never)
};
}
#[macro_export]
macro_rules! NotInCfg {
($feature : ident, $t : ty) => {
$crate::TIfCfg!($feature, $crate::utilities::never::Never, $t)
};
($feature : ident) => {
$crate::TIfCfg!($feature, $crate::utilities::never::Never, ())
};
}
#[cfg(test)]
mod tests {
use crate::config::IfElseCfg;
use core::mem::size_of;
// For use as, e.g., a counter that we don't need in some situations.
// A more normal use would be type ConfigU32 = IfElseCfg<u32, (), NEED_COUNTER, !NEED_COUNTER>
type ConfigU32<const T: bool> = IfElseCfg<u32, (), T>;
type AsU32 = ConfigU32<true>;
type AsUnit = ConfigU32<false>;
#[test]
fn test_true() {
// Check size
assert_eq!(size_of::<AsU32>(), size_of::<u32>());
// Check use
let mut val: AsU32 = AsU32::new_true(77);
*val.get_true_mut() = 66;
assert_eq!(val.consume_true(), 66);
}
#[test]
fn test_false() {
// Check size
assert_eq!(size_of::<AsUnit>(), size_of::<()>());
// Check use
let val: AsUnit = AsUnit::new_false(());
assert_eq!(val.consume_false(), ());
}
#[test]
#[should_panic]
fn test_wrong_true() {
let val: AsU32 = AsU32::new_true(77);
val.get_false_ref();
}
#[test]
#[should_panic]
fn test_wrong_false() {
let val: AsUnit = AsUnit::new_false(());
val.get_true_ref();
}
}